Add or subtract the angles as indicated: (2 pts. each)
Examples: $\quad 21^{\circ} 41^{\prime} 12 "$

$$
\frac{+11^{\circ} 32^{\prime} 54^{\prime \prime \prime}}{32^{\circ} 73^{\prime} 66^{\prime \prime}}=33^{\circ} 14^{\prime} 06^{\prime \prime}
$$

$$
\begin{array}{r}
33^{\circ} 14^{\prime} 06^{\prime \prime}=32^{\circ} 73^{\prime} 66^{\prime \prime \prime} \\
-11^{\circ} 32^{\prime} 54^{\prime \prime} \\
\frac{-11^{\circ} 32^{\prime} 54^{\prime \prime}}{21^{\circ} 41^{\prime} 12^{\prime \prime}}
\end{array}
$$

1) $46^{\circ} 27^{\prime}$
2) $\quad 13^{\circ} 49^{\prime} 58^{\prime \prime}$
$+22^{\circ} 24^{\prime}$

$$
\frac{+12^{\circ} 21^{\prime} 32^{\prime \prime}}{25^{\circ} 70^{\prime} 90^{\prime \prime}}=26^{\circ} 11^{\prime} 30^{\prime \prime}
$$

2) $56^{\circ} 24^{\prime}$
$+33^{\circ} 26^{\prime}$
3) $\begin{array}{r}78^{\circ} 46^{\prime} \\ -35^{\circ} 23^{\prime} \\ \hline 43^{\circ} 23^{\prime}\end{array}$
4) $35^{\circ} 52^{\prime}$
$\begin{array}{r}+47^{\circ} 39^{\prime} \\ \hline 82^{\circ} 91^{\prime}\end{array}$
$=83^{\circ} 31^{\prime}$
5) $49^{\circ} 16^{\prime}=48^{\circ} 76^{\prime}$
$-37^{\circ} 49^{\prime} \quad \frac{-37^{\circ} 49^{\prime}}{11^{\circ} 27^{\prime}}$
6) $21^{\circ} 46^{\prime} 52^{\prime \prime}$
$+40^{\circ} 25^{\prime} 26^{\prime \prime}$ $61^{\circ} 71^{\prime} 78^{\prime \prime}=62^{\circ} 12^{\prime} 18^{\prime \prime}$
7) $78^{\circ} 56^{\prime} 12 "$
$\frac{-49^{\circ} 15^{\prime} 09^{\prime \prime}}{29^{\circ} 41^{\prime} 03^{\prime \prime}}$
8) $46^{\circ} 19^{\prime} 22^{\prime \prime}$

$$
\frac{+35^{\circ} 51^{\prime} 40^{\prime \prime}}{81^{\circ} 70^{\prime} 62^{\prime \prime}}=82^{\circ} 11^{\prime} 02^{\prime \prime}
$$

10) $43^{\circ} 15^{\prime} 26^{\prime \prime}=42^{\circ} 74^{\prime} 86^{\prime \prime}$
$\frac{-37^{\circ} 21^{\prime} 38^{\prime \prime}}{} \frac{-37^{\circ} 21^{\prime} 38^{\prime \prime}}{5^{\circ} 53^{\prime} 48^{\prime \prime}}$

Find the average of angles that were doubled in the field with accumulated values as shown: (2 pts. each)

$$
\text { Example: } \frac{311^{\circ} 17^{\prime} 25^{\prime \prime}}{2}=\frac{310^{\circ} 76^{\prime} 85^{\prime \prime}}{2}=155^{\circ} 38^{\prime} 42.50^{\prime \prime}
$$

11) $\frac{237^{\circ} 27^{\prime} 17^{\prime \prime}}{2}=\frac{236^{\circ} 86^{\prime} 77^{\prime \prime}}{2}=118^{\circ} \mathbf{4 3} 38.50^{\prime \prime}$
12) $\frac{329^{\circ} 47^{\prime} 16^{\prime \prime}}{2}=\frac{328^{\circ} 106^{\prime} 76^{\prime \prime}}{2}=164^{\circ} 53^{\prime} 38.00^{\prime \prime}$

Find the average of angles that were repeated six times in the field with accumulated values as shown: (2 pts. each)
$\begin{array}{lll}\text { 13) } & \frac{390^{\circ} 13^{\prime} 24^{\prime \prime}}{6}= & \frac{390^{\circ} 12^{\prime} 84^{\prime \prime}}{6} \\ \text { 14) } & \frac{548^{\circ} 32^{\prime} 11^{\prime \prime}}{6}=65^{\circ} 02^{\prime} 14.00^{\prime \prime} \\ & \frac{546^{\circ} 150^{\prime} 131^{\prime \prime}}{6} & =91^{\circ} 25^{\prime} 21.83^{\prime \prime}\end{array}$

Change from degrees/minutes/seconds to degrees/decimals of a degree: (2 pts. each) Example: $\quad 36^{\circ} 14^{\prime} 52^{\prime \prime}=36^{\circ} 14^{\prime}+\frac{52^{\prime}}{60}=36^{\circ} 14.8667^{\prime}=36^{\circ}+\frac{14.8667^{\circ}}{60}=36.2478^{\circ}$
15) $24^{\circ} 30^{\prime}$
16) $36^{\circ} 45^{\prime}$
17) $69^{\circ} 11^{\prime}$
18) $16^{\circ} 24^{\prime} 30^{\prime \prime}$
19) $173^{\circ} 32^{\prime} 56^{\prime \prime}$
20) $127^{\circ} 17^{\prime} 23^{\prime \prime}$
21) $68^{\circ} 44^{\prime} 05^{\prime \prime}$
22) $223^{\circ} 37^{\prime} 48^{\prime \prime}$
23) $118^{\circ} 55^{\prime} 11^{\prime \prime}$
24) $356^{\circ} 18^{\prime} 43^{\prime \prime}$
24.5000°
36.7500°
69.1833°
16.4083°
173.5489°
127.2897°
68.7347°
223.6300°
118.9197°
356.3119°

Change from degrees/decimals of a degree to degrees/minutes/seconds: (2 pts. each)

Example: $42.2769^{\circ}=42^{\circ}+(60)(0.2769)^{\prime}$

$$
\begin{aligned}
=42^{\circ} 16.6140^{\prime} & =42^{\circ} 16^{\prime}+(60)(0.6140) " \\
& =42^{\circ} 16^{\prime} 36.84^{\prime \prime}
\end{aligned}
$$

25) $\quad 13.1761^{\circ}$
26) 21.5647°
27) 68.7342°
28) 96.1649°
29) 145.8822°
30) 221.3478°
31) 303.1078°
32) 356.1595°
$13^{\circ} 10^{\prime} 33.96^{\prime \prime}$
21³ ${ }^{\circ}$ ' $52.92^{\prime \prime}$
$68^{\circ} 44^{\prime} 03.12^{\prime \prime}$
960 09' 53.64"
$145^{\circ} 52^{\prime} 55.92^{\prime \prime}$
$221^{\circ} 20^{\prime} 52.08^{\prime \prime}$
$303^{\circ} 06^{\prime} 28.08^{\prime \prime}$
$356^{\circ} 09^{\prime} 34.20^{\prime \prime}$

Find the sum of the measured interior angles (2 pts.), the true sum for the number of angles measured (2 pts.), and indicate the error of measurement (2 pts.) for each of the polygons below:

```
33)
\(83^{\circ} 23^{\prime}\)
\(105^{\circ} 27^{\prime}\)
\(158^{\circ} 31^{\prime}\)
\(53^{\circ} 19^{\prime}\)
\(\frac{139^{\circ} 18^{\prime}}{538^{\circ} 118^{\prime}}\)
```

34)

$96^{\circ} 34^{\prime}$
$111^{\circ} 42^{\prime}$
$183^{\circ} 12^{\prime}$
$88^{\circ} 57^{\prime}$
$139^{\circ} 21^{\prime}$
$100^{\circ} 18^{\prime}$
$717^{\circ} 184^{\prime}$

35)

$$
\begin{gathered}
98^{\circ} 08^{\prime} 05^{\prime \prime} \\
149^{\circ} 16^{\prime} 12^{\prime \prime} \\
134^{\circ} 12^{\prime} 55^{\prime \prime} \\
93^{\circ} 20^{\prime} 10^{\prime \prime} \\
152^{\circ} 39^{\prime} 47^{\prime \prime} \\
174^{\circ} 32^{\prime} 50 " \\
\frac{97^{\circ} 51^{\prime} 11^{\prime \prime}}{897^{\circ} 178^{\prime} 190^{\prime \prime}}
\end{gathered}
$$

$900^{\circ} 01^{\prime \prime} 10^{\prime \prime}$
(-90000'00')

$$
\text { error }=\underline{-0^{\circ} 02^{\prime}}
$$

$$
\text { error }=\underline{+\mathbf{0}^{\circ} 04^{\prime}}
$$

$$
\text { error }=+0^{\circ} 01^{\prime} 10^{\prime \prime}
$$

Fill in the blanks in each sentence: (2 pts. each)
36) Two lines that lie in the same plane and never intersect are parallel
37) An angle of less than 90° is an acute angle.
38) An angle of 90° is a right angle.
39) An angle of more than 90°, but less than 180°, is an obtuse \qquad angle.
40) Two angles are said to be complementary if their sum is 90°.
41) Two angles are said to be supplementary if their sum is 180°.
42) A line that cuts two or more lines is a transversal.
43) Two triangles are congruent if their corresponding sides and corresponding angles are equal.
44) Two triangles are similar if their corresponding angles are equal and their corresponding sides are proportional.

